Introduction: Infection with the new coronavirus [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] was first registered in December 2019 in China and then later spread rapidly to the rest of the world. On 31st December 2019, the World Health Organization on 11th March 2020 declared a pandemic with this virus. In Bosnia and Herzegovina, the first infected person was registered on 5th March 2020 in Banja Luka.
Aim: To present some aspects of the olfactory and gustatory dysfunction in patients with the coronavirus disease of 2019 (COVID-19).
Methods: The article has an analytical character and review of the literature.
Results and Discussion: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high similarity with SARS-CoV-1 and uses the same receptors to enter the human body [angiotensin-converting enzyme 2 (ACE2)].2 COVID-19 is a respiratory infection that is primarily transmitted via respiratory droplets. In the first year of the pandemic, the SARS-CoV-2 coronavirus has mutated several times, resulting in genetically different variants. The variants are named by using letters of the Greek alphabet. The Alpha variant (Wuhan, China), Beta variant (first outbreak in South Africa), the Gamma variant (first outbreak in Brazil), and the Delta variants (first outbreak in India and Omicron variant) have caused an increase in cases worldwide. Typical symptoms of COVID-19 infection can be very moderate to very severe, with severe respiratory symptoms and fatal outcomes. COVID-19 is primarily a disease of the respiratory system, but SARS-CoV-2 also penetrates the central nervous system (CNS) and apparently could be responsible for fatal outcomes in some cases. The entry of the virus into the brain can lead to different neurological and psychiatric manifestations, including headache, loss of smell (anosmia) and the loss of taste (ageusia), encephalopathy, encephalitis, paresthesia, myalgia, Guillain-Barre syndrome, and cerebrovascular diseases.
Conclusion: The coronavirus disease of 2019 (COVID-19) is primarily a disease of the respiratory system, but SARS-CoV-2 also penetrates the CNS, leading to serious neurological disorders, and apparently, it is also responsible for mortality. The frequency of anosmia and ageusia in patients with COVID-19 varies widely, from 10 to 65%, being the primary symptom in about 12% of patients. Most of the analyzed subjects reported olfactory recovery. However, anosmia and ageusia can last several months or even longer. For now, the etiopathogenesis of anosmia and ageusia in SARS-CoV-2 infection is still unknown. Nasal or systemic corticosteroids were recommended in the acute phase as well as olfactory training (sniffing the smell of rose, lemon, and cloves) in the acute and chronic phases, and many other drugs as potential therapeutics.
Sinanović O, Muftić M, Sinanović S. Covid-19 pandemia: neuropsychiatric comorbidity and consequences. Psychiatr Danub 2020;32(2):236–244. DOI: 10.24869/psyd.2020.236
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17(3):181–192. DOI: 10.1038/s41579-018-0118-9
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395(10223):514–523. DOI: 10.1016/S0140-6736(20)30154-9
Koyama S, Kondo K, Ueha R, et al. Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. Int J Mol Sci 2021;22(16):8912. DOI: 10.3390/ijms22168912
Milovanović DR, Janković SM, Ružić Zečević D, et al. Lečenje koronavirusne bolesti (COVID-19). Med Cas 2020;54(1):44–49. DOI: 10.5937/mckg54-25981
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Med Virol 2020:92(6):552–555. DOI: 10.1002/jmv.25728
Gandhi S, Srivastava AK, Ray U, et al. Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci 2020; 11(10):1379–1381. DOI: 10.1021/acschemneuro.0c00217
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol 2020;19(9):767–783. DOI: 10.1016/S1474-4422(20)30221-0
Sinanovic O. Long-term neuropsychiatric consequences of SARS-CoV infections. Psychiatr Danub 2021;33(Suppl 3):S309–S317.
Goncalves S, Goldstein BJ. Pathophysiology of olfactory disorders and potential treatment strategies. Curr Otorhinolaryngol Rep 2016;4(2):115–121. DOI: 10.1007/s40136-016-0113-5
Lop Gros J, Iglesias Coma M, González Farré M, et al. Olfactory dysfunction in COVID-19, a review of the evidence and implications for pandemic management. Acta Otorrinolaringol Esp (Engl Ed) 2020;71(6):379–385. DOI: 10.1016/j.otorri.2020.04.003
Holbrook EH, Leopold DA. An updated review of clinical olfaction. Curr Opin Otolaryngol Head Neck Surg 2006;14(1):23–28. DOI: 10.1097/01.moo.0000193174.77321.39
Holbrook EH, Leopold DA. Anosmia: diagnosis and management. Curr Opin Otolaryngol Head Neck Surg 2003;11(1):54–60. DOI: 10.1097/00020840-200302000-00012
Seiden AM. Postviral olfactory loss. Otolaryngol Clin North Am 2004;37(6):1159–1166. DOI: 10.1016/j.otc.2004.06.007
Lee DY, Lee WH, Wee JH, et al. Prognosis of postviral olfactory loss: follow-up study for longer than one year. Am J Rhinol Allergy 2014;28:419–422. DOI: 10.2500/ajra.2014.28.4102
Welge-Lüssen A, Wolfensberger M. Olfactory disorders following upper respiratory tract infections. Adv Otorhinolaryngol 2006;63(5):125–132. DOI: 10.2500/ajra.2014.28.4102
Pellegrino R, Walliczek-Dworschak U, Winter G, et al. Investigation of chemosensitivity during and after an acute cold. Int Forum Allergy Rhinol 2017;7(2):185–191. DOI: 10.1002/alr.21869
Lee Y, Min P, Lee S, et al. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci 2020;35(18):e174. DOI: 10.3346/jkms.2020.35.e174
Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan 2006;15(1):26–28. PMID: 16599281
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77(6):1–9. DOI: 10.1001/jamaneurol.2020.1127
Machado C, Gutierrez J. Anosmia and ageusia as initial or unique symptoms after SARS-COV-2 virus infection. Preprints 2020;2020040272. DOI: 10.20944/preprints202004.0272.v1
Al-Ani RM, Acharya D. Prevalence of anosmia and ageusia in patients with COVID-19 at a primary health center, Doha, Qatar. Indian J Otolaryngol Head Neck Surg 2020;74(Suppl 2):1–7. DOI: 10.1007/s12070-020-02064-9
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020;277(8):2251–2261. DOI: 10.1007/s00405-020-05965-1
Agyeman AA, Chin KL, Landersdorfer CB, et al. Smell and taste dysfunction in patients with covid-19: a systematic review and meta-analysis. Mayo Clin Proc 2020;95(8):1621–1631. DOI: 10.1016/j.mayocp.2020.05.030
Hajare PS, Harugop AS, Goswami L, et al. Prevalence of olfactory and gustatory dysfunction in coronavirus disease (COVID-19): a cross sectional study in our tertiary care hospital. Indian J Otolaryngol Head Neck Surg 2021;74(Suppl 2):3012-3015. DOI: 10.1007/s12070-021-02702-w
Elibol E. Otolaryngological symptoms in COVID-19. Eur Arch Otorhinolaryngol 2021;278(4):1233–1236. DOI: 10.1007/s00405-020-06319-7
Kökoğlu K, Tektaş N, Baktir-Okcesiz FE, et al. Mild and moderate COVID-19 disease does not affect hearing function permanently: a cross-sectional study ınvolving young and middle-aged healthcare givers. Eur Arch Otorhinolaryngol 2021;278(9):3299–3305. DOI: 10.1007/s00405-021-06883-6
Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: a systematic review and meta-analysis. Eur J Intern Med 2021;92:55–70. DOI: 10.1016/j.ejim.2021.06.009
Saniasiaya J, Kulasegarah J, Narayanan P. Olfactory dysfunction amongst children and adolescents with laboratory confirmed coronavirus disease 2019: a systematic review. J Laryngol Otol 2021;135(11):953–957. DOI: 10.1017/S0022215121002292
Parisi GF, Brindisi G, Indolfi C, et al. COVID-19, anosmia, and ageusia in atopic children. Pediatr Allergy Immunol 2022;33(Suppl 27):99–101. DOI: 10.1111/pai.13644
Vaira LA, Salzano G, Deiana G, et al. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope 2020;130(7):1787. DOI: 10.1002/lary.28692
Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382(12):1177–1179. DOI: 10.1056/NEJMc2001737
Butowt R, von Bartheld CS. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist 2020;27(6):582–603. DOI: 10.1177/1073858420956905
Lee JC, Nallani R, Cass L, et al. A systematic review of the neuropathologic findings of post-viral olfactory dysfunction: implications and novel insight for the COVID-19 pandemic. Am J Rhinol Allergy 2021;35(3):323–333. DOI: 10.1177/1945892420957853
Khani E, Khiali S, Beheshtirouy S, et al. Potential pharmacologic treatments for COVID-19 smell and taste loss: a comprehensive review. Eur J Pharmacol 2021;912:174582. DOI: 10.1016/j.ejphar.2021.174582
Luchiari HR, Giordano RJ, Sidman RL, et al. Does the RAAS play a role in loss of taste and smell during COVID-19 infections? Pharmacogenomics J 2021;21(2):109–115. DOI: 10.1038/s41397-020-00202-8
Hosseini S, Wilk E, Michaelsen-Preusse K, et al. Long-Term neuroinflammation induced by influenza a virus infection and the impact on hippocampal neuron morphology and function. J Neurosci 2018;38(12):3060–3080. DOI: 10.1523/JNEUROSCI.1740-17.2018
Volmer R, Prat CM, Le Masson G, et al. Borna disease virus infection impairs synaptic plasticity. J Virol 2007;81(16):8833–8837. DOI: 10.1128/JVI.00612-07
Espinoza JA, Bohmwald K, Cespedes PF, et al. Impaired learning resulting from respiratory syncytial virus infection. Proc Natl Acad Sci U S A 2013;110(22):9112–9117. DOI: 10.1073/pnas.1217508110
Abdelalim AA, Mohamady AA, Elsayed RA, et al. Corticosteroid nasal spray for recovery of smell sensation in COVID-19 patients: a randomized controlled trial. Am J Otolaryngol 2021;42(2):102884. DOI: 10.1016/j.amjoto.2020.102884
Vroegop AV, Eeckels AS, Van Rompaey V, et al. COVID-19 and olfactory dysfunction-an ENT perspective to the current COVID-19 pandemic. B-ENT 2020;16(1):81–85. DOI: 10.5152/B-ENT.2020.20127
Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000;23:649–711. DOI: 10.1146/annurev.neuro.23.1.649
Hummel T, Rissom K, Reden J, et al. Effects of olfactory training in patients with olfactory loss. Laryngoscope 2009;119(3):496–499. DOI: 10.1002/lary.20101
Damm M, Pikart LK, Reimann H, et al. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope 2014;124(4):826–831. DOI: 10.1002/lary.24340
Gudziol V, Hummel T. Effects of pentoxifylline on olfactory sensitivity: a postmarketing surveillance study. Arch Otolaryngol Head Neck Surg 2009;135(3):291–295. DOI: 10.1001/archoto.2008.524
Whitcroft KL, Gudziol V, Hummel T. Short-course pentoxifylline is not effective in post-traumatic smell loss: a pilot study. Ear Nose Throat J 2020;99(1):58–61. DOI: 10.1177/0145561319840888
Meusel T, Albinus J, Welge-Luessen A, Hähner A, et al. Short-term effect of caffeine on olfactory function in hyposmic patients. Eur Arch Otorhinolaryngol 2016;273(8):2091–2095. DOI: 10.1007/s00405-015-3879-z
Siderowf A, Jennings D, Connolly J, et al. Risk factors for Parkinson's disease and impaired olfaction in relatives of patients with Parkinson's disease. Mov Disord 2007;22(15):2249–2255. DOI: 10.1002/mds.21707
Henkin RI, Velicu I, Schmidt L. An open-label controlled trial of theophylline for treatment of patients with hyposmia. Am J Med Sci 2009;337(6):396–406. DOI: 10.1097/MAJ.0b013e3181914a97
Henkin RI, Schultz M, Minnick-Poppe L. Intranasal theophylline treatment of hyposmia and hypogeusia: a pilot study. Arch Otolaryngol Head Neck Surg 2012;138(11):1064–1070. DOI: 10.1001/2013.jamaoto.342
Mohamad SA, Badawi AM, Mansour HF. Insulin fast-dissolving film for intranasal delivery via olfactory region, a promising approach for the treatment of anosmia in COVID-19 patients: design, in-vitro characterization and clinical evaluation. Int J Pharm 2021;601:120600. DOI: 10.1016/j.ijpharm.2021.120600
Rezaeian A. Effect of intranasal insulin on olfactory recovery in patients with hyposmia: a randomized clinical trial. Otolaryngol Head Neck Surg 2018;158(6):1134–1139. DOI: 10.1177/0194599818764624
Schöpf V, Kollndorfer K, Pollak M, et al. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: a pilot study. Rhinology 2015;53:371–378. DOI: 10.4193/Rhino15.065
Kim HY, Dhong HJ, Min JY, et al. Effects of statins on regeneration of olfactory epithelium. Am J Rhinol Allergy 2010;24(2):121–125. DOI: 10.2500/ajra.2010.24.3455
Kim HY, Kim JH, Dhong HJ, et al. Effects of statins on the recovery of olfactory function in a 3-methylindole-induced anosmia mouse model. Am J Rhinol Allergy 2012;26(2):e81–e84. DOI: 10.2500/ajra.2012.26.3719
Kern RC, Conley DB, Haines GK. Treatment of olfactory dysfunction, II: studies with minocycline. Laryngoscope 2004;114(12):2200–2204. DOI: 10.1097/01.mlg.0000149458.21501.6f
Davidson TM, Smith WM. The Bradford hill criteria and zinc-induced anosmia: a causality analysis. Arch Otolaryngol Head Neck Surg 2010;136(7):673–676. DOI: 10.1001/archoto.2010.111
Lyckholm L, Heddinger SP, Parker G, et al. A randomized, placebo controlled trial of oral zinc for chemotherapy-related taste and smell disorders. J Pain Palliat Care Pharmacother 2012;6(2):111–114. DOI: 10.3109/15360288.2012.676618
Hummel T, Whitcroft KL, Rueter G, et al. Intranasal vitamin A is beneficial in post-infectious olfactory loss. Eur Arch Otorhinolaryngol 2017;274(7):2819–2825. DOI: 10.1007/s00405-017-4576-x
Yan CH, Rathor A, Krook K, et al. Effect of omega-3 supplementation in patients with smell dysfunction following endoscopic sellar and parasellar tumor resection: a multicenter prospective randomized controlled trial. Neurosurgery 2020;87(2):e91–e98. DOI: 10.1093/neuros/nyz559
Singh CV, Jain S, Parveen S. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients. Am J Otolaryngol 2021;42(3):102892. DOI: 10.1016/j.amjoto.2020.102892
Koc S, Cayli S, Aksakal C, et al. Protective effects of melatonin and selenium against apoptosis of olfactory sensory neurons: a rat model study. Am J Rhinol Allergy 2016;30(3):62–66. DOI: 10.2500/ajra.2016.30.4313
Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther 2020;12(1):69. DOI: 10.1186/s13195-020-00640-3