Science, Art and Religion

Register      Login

VOLUME 1 , ISSUE 2-4 ( April-December, 2022 ) > List of Articles

REVIEW ARTICLE

Open Questions over the COVID-19 Pandemic

Sandra Kraljevic Pavelic, Kresimir Pavelic

Keywords : Community, COVID-19, Pandemic, SARS-CoV-2, Scientific facts, Vaccination

Citation Information : Pavelic SK, Pavelic K. Open Questions over the COVID-19 Pandemic. 2022; 1 (2-4):210-220.

DOI: 10.5005/jp-journals-11005-0027

License: CC BY-NC 4.0

Published Online: 20-03-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Chosen controversial themes that arose upon declared COVID-19 pandemic are briefly discussed and reviewed herein. Given the relatively one-sided reporting on the origin and course of COVID-19 and the constant pressure for the “vaccination” against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), scientific information and research results that show problematic aspects of the COVID-19 counteracting measures put in place are presented. These aspects are often neglected in mainstream communication channels and are underrepresented in the scientific literature. As science is not a dogma but comprises all available objective facts and angles of view, sometimes opposing each other and sometimes not fitting in one unique picture, the presented portion of information may be important for a wider discussion within the scientific community. Scientific facts may be accordingly confronted and openly discussed taking in mind that any discussion should be driven primarily by humanistic goals. The closest truth should be consequently drawn from the confrontations of arguments and facts in light of a humanistic context.


HTML PDF Share
  1. Trnka R, Lorencova R. Fear, anger, and media-induced trauma during the outbreak of COVID-19 in the Czech Republic. Psychol Trauma 2020;12(5):546–549. DOI: 10.1037/tra0000675
  2. Dubey S, Biswas P, Ghosh R, et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr 2020;14(5):779–788. DOI: 10.1016/j.dsx.2020.05.035
  3. Pimenta IDSF, de Sousa Mata ÁN, Braga LP, et al. Media and scientific communication about the COVID-19 pandemic and the repercussions on the population's mental health: a protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020;99(50):e23298. DOI: 10.1097/MD.0000000000023298
  4. Liu C, Liu Y. Media exposure and anxiety during COVID-19: the mediation effect of media vicarious traumatization. Int J Environ Res Public Health 2020;17(13):4720. DOI: 10.3390/ijerph17134720
  5. Giri SP, Maurya AK. A neglected reality of mass media during COVID-19: effect of pandemic news on individual's positive and negative emotion and psychological resilience. Pers Individ Dif 2021;180:110962. DOI: 10.1016/j.paid.2021.110962
  6. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-QPCR [published correction appears in Euro Surveill 2020;25(14):20200409c] [published correction appears in Euro Surveill 2020;25(30):2007303] [published correction appears in Euro Surveill 2021;26(5):210204e]. Euro Surveill 2020;25(3):2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045
  7. Mehra MR, Desai SS, Ruschitzka F, et al. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020. DOI: 10.1016/S0140-6736(20)31180-6
  8. Mehra MR, Desai SS, Kuy SR, Retraction: Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med 2020;382(26):2582. DOI: 10.1056/NEJMc2021225
  9. Centre for Disease Control. [accessed 2021 Dec 26]. Available from: https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html
  10. Review Report by an International Consortium of Scientists in Life Sciences (ICSLS)—Corman-Drosten et al., Eurosurveillance 2020 (Updated: 2.12.2020). [accessed 2021 Dec 26]. Available from: https://www.stopworldcontrol.com/downloads/en/legal/science/drosten.pdf
  11. https://www.who.int/news/item/20-01-2021-who-information-notice-for-ivd-users-2020-05#.YAqPMRUHgfY. [accessed 2021 Dec 26].
  12. https://www.cdc.gov/csels/dls/locs/2021/07-21-2021-lab-alert-Changes_CDC_RT-PCR_SARS-CoV-2_Testing_1.html. [accessed 2021 Dec 21].
  13. Jackson LA, Anderson EJ, Rouphael, NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 2020;383(20):1920–1931. DOI: 10.1056/nejmoa2022483
  14. Maringe C, Spicer J, Morris M, et al. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol 2020;21(8):1023–1034. DOI: 10.1016/S1470-2045(20)30388-0
  15. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396(10249):467–478. DOI: 10.1016/S0140-6736(20)31604-4
  16. Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396(10249):479–488. DOI: 10.1016/S0140-6736(20)31605-6
  17. https://www.washingtonpost.com/business/us-signs-contract-with-pfizer-for-covid-19-vaccine-doses/2020/07/22/898b6944-cc16-11ea-99b0-8426e26d203b_story.html. [accessed 2021 Dec 26].
  18. Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 2020;324(11):1048–1057. DOI: 10.1001/jama.2020.16349
  19. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020;324(13):1330–1341. DOI: 10.1001/jama.2020.17023
  20. https://investor.regeneron.com/news-releases/news-release-details/regenerons-regn-cov2-antibody-cocktail-reduced-viral-levels-and. [accessed 2021 Dec].
  21. Pavelić K, Kraljević Pavelić S, Brix B, et al. A perspective on COVID-19 management. J Clin Med 2021;10(8):1586. DOI: 10.3390/jcm10081586
  22. Gérard AO, Laurain A, Fresse A, et al. Remdesivir and acute renal failure: a potential safety signal from disproportionality analysis of the WHO safety database. Clin Pharmacol Ther 2021;109(4):1021–1024. DOI: 10.1002/cpt.2145
  23. Fan Q, Zhang B, Ma J, et al. Safety profile of the antiviral drug remdesivir: an update. Biomed Pharmacother 2020;130:110532. DOI: 10.1016/j.biopha.2020.110532
  24. See RH, Petric M, Lawrence DJ, et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J Gen Virol 2008;89(Pt 9):2136–2146. 10.1099/vir.0.2008/001891-0
  25. Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. Erratum in: Tseng C-T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 7(8). DOI: 10.1371/annotation/2965cfae-b77d-4014-8b7b-236e01a35492. PLoS One 2012;7(4):e35421. DOI: 10.1371/journal.pone.0035421
  26. Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 2004;78(22):12672–12676. DOI: 10.1128/JVI.78.22.12672-12676.2004
  27. https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19. [accessed 2021 Dec 26].
  28. https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised. [accessed 2021 Dec 26].
  29. Brown RB. Outcome reporting bias in COVID-19 mRNA vaccine clinical trials. Medicina (Kaunas) 2021;57(3):199. DOI: 10.3390/medicina57030199
  30. Yahi N, Chahinian H, Fantini J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect 2021;83(5):607–635. DOI: 10.1016/j.jinf.2021.08.010
  31. Israel A, Shenhar Y, Green I, et al. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. medRxiv 2021. DOI: 10.1101/2021.08.19.21262111
  32. Shahbaznejad L, Davoudi A, Eslami G, et al. Effects of ivermectin in patients with COVID-19: a multicenter, double-blind, randomized, controlled clinical trial. Clin Ther 2021;43(6):1007–1019. DOI: 10.1016/j.clinthera.2021.04.007
  33. Laurini E, Marson D, Aulic S, et al. Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Sci Rep 2021;11(1):20274. DOI:10.1038/s41598-021-99827-3
  34. https://coronavirus.data.gov.uk/details/deaths. [accessed 2021 Dec 26].
  35. Sharfstein JM, Becker SJ, Mello MM. Diagnostic testing for the novel coronavirus. JAMA 2020;323(15):1437–1438. DOI: 10.1001/jama.2020.3864
  36. Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results: hidden problems and costs. Lancet Respir Med 2020;8(12):1167–1168. DOI: 10.1016/S2213-2600(20)30453-7
  37. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med 2020;173(4):262–267. DOI: 10.7326/M20-1495
  38. Healy B, Khan A, Metezai H, et al. The impact of false positive COVID-19 results in an area of low prevalence. Clin Med (Lond) 2021;21(1):e54–e56. DOI: 10.7861/clinmed.2020-0839
  39. Kortela E, Kirjavainen V, Ahava MJ, et al. Real-life clinical sensitivity of SARS-CoV-2 RT-QPCR test in symptomatic patients. PLoS One 2021;16(5):e0251661. DOI: 10.1371/journal.pone.0251661
  40. Braunstein GD, Schwartz L, Hymel P, et al. False Positive results with SARS-CoV-2 RT-QPCR tests and how to evaluate a RT-PCR-positive test for the possibility of a false positive result. J Occup Environ Med 2021;63(3):e159–e162. DOI: 10.1097/JOM.0000000000002138
  41. Cao S, Gan Y, Wang C, et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million residents of Wuhan, China. Nat Commun 2020;11(1):5917. DOI: 10.1038/s41467-020-19802-w
  42. Gao M, Yang L, Chen X, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med 2020;169:106026. DOI: 10.1016/j.rmed.2020.106026
  43. Lee JS, Goldstein JM, Moon JL, et al. Analysis of the initial lot of the CDC 2019-novel coronavirus (2019-nCoV) real-time RT-qPCR diagnostic panel. PLoS One 2021;68(12):e0260487. DOI: 10.1371/journal.pone.0260487
  44. Xiao J, Shiu E, Gao H, et al. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—personal protective and environmental measures. Emerg. Infect Dis 2021;26(5):967–975. DOI: 10.3201/eid2605.190994
  45. Mitchell NJ, Hunt S. Surgical face masks in modern operating rooms—a costly and unnecessary ritual? J Hosp Infect 1991;18(3):239–242. DOI: 10.1016/0195-6701(91)90148-2
  46. Lipp A, Edwards P. Disposable surgical face masks for preventing surgical wound infection in clean surgery. Cochrane Database Syst Rev 2014;2016(4):CD002929. DOI: 10.1002/14651858.CD002929.pub2
  47. Radonovich LJ Jr, Simberkoff MS, Bessesen MT, et al. N95 respirators vs medical masks for preventing influenza among health care personnel: a randomized clinic trial. JAMA 2019;322(9):824–833. DOI: 10.1001/jama.2019.11645
  48. bin-Reza F, Chavarrias LV, Nicoll A, et al. The use of masks and respirators to prevent transmission of influenza: a systematic review of the scientific evidence. Influenza Other Respir Viruses 2012;6(4):257–267. DOI: 10.1111/j.1750-2659.2011.00307.x
  49. Cheng Y, Ma N, Witt C, et al. Face masks effectively limit the probability of SARS-CoV-2 transmission. Science 2021;372(6549):1439–1443. DOI: 10.1126/science.abg6296
  50. Jefferson T, Del Mar CB, Dooley L, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2020;11(11):CD006207. DOI: 10.1002/14651858.CD006207.pub5
  51. Jefferson T, Jones MA, Al-Ansary L, et al. medRxiv 2020;2020.03.30.20047217. DOI: 10.1101/2020.03.30.20047217
  52. Bae TS, Kim M-C, Kim JY, et al. Effectiveness of surgical and cotton masks in blocking SARS-CoV-2: a controlled comparison in 4 patients. Ann Intern Med 2020;M20-1342. DOI: 10.7326/M20-1342
  53. Klompas M, Morris MC, Sinclair J, et al. Universal masking in hospitals in the Covid-19 era. N Engl J Med 2020;382:e63. DOI: 10.1056/NEJMp2006372
  54. Lazzarino A. Face masks for the public during the covid-19 crisis. BMJ 2020;369:m1435. DOI: 10.1136/bmj.m1435
  55. Schwarz S, Jenetzky E, Krafft H, et al. Corona children studies “Co-Ki”: first results of a Germany-wide registry on mouth and nose covering (mask) in children. Monatsschr Kinderheilkd 2021;169(4):353–365. DOI: 10.21203/rs.3.rs-124394/v2
  56. Kisielinski K, Giboni P, Prescher A, et al. Is a mask that covers the mouth and nose free from undesirable side effects in everyday use and free of potential hazards? Int J Environ Res Public Health 2021;18(8):4344. DOI: 10.3390/ijerph18084344
  57. Thacker PD. Covid-19: researcher blows the whistle on data integrity issues in Pfizer's vaccine trial. BMJ 2021;375:n2635. DOI: 10.1136/bmj.n26355
  58. https://www.ema.europa.eu/en/about-us/how-we-work/governance-documents/funding. [accessed 2021 Dec 29 2021].
  59. https://www.italy24news.com/News/287882.html. [accessed 2021 Dec 29].
  60. Clarke L. Covid-19: who fact checks health and science on Facebook? BMJ 2021;373:n1170. DOI: 10.1136/bmj.n1170
  61. https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/mortalityratesinvolvingfludeathsandcovid19deathsin2021. [accessed 2021 Dec 29].
  62. Walach H, Klement RJ, Aukema W. Retracted: The safety of COVID-19 vaccinations—we should rethink the policy. Retraction in: Vaccines (Basel) 2021;9(7):729. Vaccines (Basel) 2021;9(7):693. DOI:10.3390/vaccines9070693
  63. Nyberg F, Lindh M, Vanfleteren LEGW, et al. Adverse events of special interest for COVID-19 vaccines—background incidences vary by sex, age and time period and are affected by the pandemic. medRxiv 2021. DOI: 10.1101/2021.10.04.21263507v1
  64. Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis 2021;21(7):939–949. DOI: 10.1016/S1473-3099(21)00224-3
  65. An QJ, Qin DA, Pei JX. Reactive arthritis after COVID-19 vaccination. Hum Vaccin Immunother 2021;17(9):2954–2956. DOI: 10.1080/21645515.2021.1920274
  66. Mommaerts J-L. COVID-vaccinations: why it matters to know the real effectiveness. BMJ 2020;371:m4924. DOI: 10.1136/bmj.m4924
  67. Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol 2021;19:211–219. DOI: 10.1038/s41579-020-00462-y
  68. Miller ER, McNeil MM, Moro PL, et al. The reporting sensitivity of the Vaccine Adverse Event Reporting System (VAERS) for anaphylaxis and for Guillain-Barré syndrome. Vaccine 2020;38(47):7458–7463. DOI: 10.1016/j.vaccine.2020.09.072
  69. https://vaers.hhs.gov/, https://openvaers.com/. [accessed 2021 Dec 17].
  70. https://brownstone.org/articles/natural-immunity-and-covid-19-twenty-nine-scientific-studies-to-share-with-employers-health-officials-and-politicians/. [accessed 2021 Dec 30].
  71. Zhang J, Lin H, Ye B, et al. One-year sustained cellular and humoral immunities of coronavirus disease 2019 (COVID-19) convalescents. Clin Infect Dis 2020;75(1):e1072–e1081. DOI: 10.1093/cid/ciab884
  72. Riemersma KK, Grogan BE, Kita-Yarbro A, et al. Shedding of infectious SARS-CoV-2 despite vaccination. medRxiv 2021. DOI: 10.1101/2021.07.31.21261387
  73. Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 2021;595(7867):421–425. DOI: 10.21203/rs.3.rs-132821/v1
  74. Gazit S, Shlezinger R, Perez G, et al. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections. MedRxiv 2021. DOI: 10.1101/2021.08.24.21262415
  75. Hall VJ, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: large, multicentre, prospective cohort study (SIREN). Lancet 2021;397(10283):1459–1469. DOI: 10.1016/S0140-6736(21)00675-9
  76. Harvey RA, Rassen JA, Kabelac CA, et al. Association of SARS-CoV-2 seropositive antibody test with risk of future infection. JAMA Intern Med 2021;181(5):672–679. DOI: 10.1001/jamainternmed.2021.0366
  77. Wang Z, Yang X, Zhong J, et al. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun 2021;12(1):1724. DOI: 10.1038/s41467-021-22036-z
  78. Domazet-Lošo T. mRNA vaccines: why is the biology of retroposition ignored? Genes (Basel) 2022;13(5):719. DOI: 10.3390/genes13050719
  79. Cohen. Do coronavirus genes slip into human chromosomes? Science 2021;372(6543):674–675. DOI: 10.1126/science.372.6543.674
  80. Olliaro P, Torreele E, Vaillant M. COVID-19 vaccine efficacy and effectiveness—the elephant (not) in the room. Lancet 2021;2(7):e279–e280. DOI: 10.1016/S2666-5247(21)00069-0
  81. Merrill ED, Kashem SW, Amerson EH, et al. Association of facial pustular neutrophilic eruption with messenger RNA-1273 SARS-CoV-2 vaccine. JAMA Dermatol 2021;157(9):1128–1130. DOI: 10.1001/jamadermatol.2021.2474
  82. Subramanian SV, Kumar A. Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. Eur J Epidemiol 2021;36(12):1237–1240. DOI: 10.1007/s10654-021-00808-7
  83. Seneff S, Nigh G. Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. Int J Vaccine Theory Pract Res 2021;2(1):38. DOI: 10.56098/ijvtpr.v2i1.23
  84. Shitrit P, Zuckerman NS, Mor O, et al. Nosocomial outbreak caused by the SARS-CoV-2 Delta variant in a highly vaccinated population, Israel. Euro Surveill 2021;26(39):2100822. DOI: 10.2807/1560-7917.ES.2021.26.39.2100822
  85. Lensen R, Netea MG, Rosendall FR. Hepatitis C virus reactivation following COVID-19 vaccination—a case report, Int Med Case Rep J 2021;14:573–576. DOI: 10.2147/IMCRJ.S328482
  86. Singanayagam A, Hakki S, Dunning J, et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: an observational, longitudinal, cohort study. Lancet Infect Dis 2022;22(2):183–195. DOI: 10.1016/S1473-3099(21)00648-4
  87. Goldberg Y, Mandel M, Bar-On YM, et al. Waning immunity after the BNT162b2 vaccine in Israel. N Engl J Med 2021;385(24):e85. DOI: 10.1056/NEJMoa2114228
  88. Lazano-Ojalvo D, Camara C, Lopez-Granados E, et al. Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals. Cell Rep 2021:36(8):109570. DOI: 10.1016/j.celrep.2021.109570
  89. Liu J, Wang J, Xu J, et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov 2021;7(1):99. DOI: 10.1038/s41421-021-00329-3
  90. Jiang H, Mei YF. SARS-CoV-2 spike impairs DNA damage repair and inhibits V(D)J recombination in vitro. Viruses 2021;13(10):2056. DOI: 10.3390/v13102056
  91. Kahn B, Apostolidis SA, Bhatt V, et al. Multisystem inflammation and organ dysfunction after BNT162b2 messenger RNA coronavirus disease 2019 vaccination. Crit Care Explor 2021;3(11):e0578. DOI: 10.1097/CCE.0000000000000578
  92. Roberts M. Covid Infection Protection Waning in Double Jabbed. BBC News Online; 2021. [accessed 2021 Dec 30]. Available from: https://www.bbc.com/news/health-58322882
  93. Blumenthal KG, Robinson LB, Camargo CA, et al. Acute allergic reactions to mRNA COVID-19 vaccines. JAMA 2021;325(15):1562–1565. DOI: 10.1001/jama.2021.3976
  94. Pegu A, O’Connell SE, Schmidt SD, et al. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021;373(6561):1372–1377. DOI: 10.1126/science.abj4176
  95. Garcia-Azorin D, Do TP, Gantenbein AR, et al. Delayed headache after COVID-19 vaccination: a red flag for vaccine induced cerebral venous thrombosis. Headache 2021;22(1):108. DOI: 10.1186/s10194-021-01324-5
  96. Yesilkaya UH, Sen M, Tasdemir BG. A novel adverse effect of the BNT162b2 mRNA vaccine: first episode of acute mania with psychotic features. Brain Behav Immun Health 2021;18:100363. DOI: 10.1016/j.bbih.2021.100363
  97. World Health Organization's Global Drug Database of Adverse Drug Events. VigiBase (VigiAccess). [accessed 2021 Jan 3] Available from: http://www.vigiaccess.org/
  98. Kuzumi A, Yoshizaki A, Chiba K, et al. Genital necrosis with cutaneous thrombosis after COVID-19 mRNA vaccination. J Eur Acad Dermatol Venereol 2021;36(3):e185–e186. DOI: 10.1111/jdv.17837
  99. Gundry SR. Abstract 10712: observational findings of PULS cardiac test findings for inflammatory markers in patients receiving mRNA vaccines. Circulation 2021;144:A10712. DOI: 10.1161/circ.144.suppl_1.10712
  100. Great Barrington Declaration. [accessed 2021 Dec 30]. Available from: https://gbdeclaration.org/
  101. Classen JB. COVID-19 RNA based vaccines and the risk of prion disease. Microbiol Infect Dis 2021;5(1):1–3. DOI: 10.33425/2639-9458.1109
  102. Parkash O, Sharko A, farooqi a, et al. acute pancreatitis: a possible side effect of COVID-19 vaccine. Cureus 2021;13(4):e14741. DOI: 10.7759/cureus.14741
  103. Finsterer J, Scorza FA. SARS-CoV-2 vaccines are not free of neurological side effects. Acta Neurol Scand 2021;144(1):109–110. DOI: 10.1111/ane.13451
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.